eleln

SHIP

OGOship API document

Version 1.3

Pekka Ylenius

pekka.ylenius@ogoship.com




+358-50-4801907

Contents
(01 012 V=TSP 3
LCT=T o 1=T =1 o | (o O OO TP PSP UTUPPTOPPTRPRRPITNS 3
Reference implementations and readymade libraries........cccocceeiieciii e e 4
How integration to your service should be done ..........ueeee i 4
U g Yo Tl od | 11 T = VST 4
PN o I L= ol 1 o] = T VA ol 3 Y oY -SSP 4
Bt PraAC iSO i 4
Y oy A TN T = = [ o ISP 4
User interface for the Merchant...........oo it 5
Doing periodic updates from OGOSIP ..o e e e e e e e e e eeeees 6
Doing synchronous updates t0 OGOSHIP ........uuiiiiiiiii e e e e e e e e e e e e e e e e anneeeeeeas 6
Testing OGOShIP INTEEIAtION ... e e e e e e e e e e e seabreeeeeeeeeesnnsrsaaeeeeasns 6
O] { R T o o 0 1=1 d o Lo Yo TSSOSO PP PSPPI 7
(0= olo] o 1= S P O P U PP PP PP PSP PP 7
(0o =T TP U PP P ST PTPPRTRPRPRRTO 8
(0] e (=T K = ) (UL PP P TP P PURTOPRPTOPIIOt 8
Adding new orders or updating eXisting Orders........cc.uveiiiiii et e e 8
(0] e (=T QU 2 O TP U SRS PRTPRPROPRIN 8
Order SCREMA ..ttt ettt et s h e s bt e st e st e e b e e bt e b et eme e et e e bt e beenbeesbeeenneens 8
(01 a 10 o] BT [V 7= VYol =T o o - USSP 9
CUSTOMET SCNBIMA ...ttt sttt ettt et e st e st e st e e b e e b e e shee st e sabesab e e st enteesbeesanesaneas 9
(0] e [=T W] T ol o 1=1 4 o - TSRO P SO PPPOPR 10
DOCUMENT SCNEMI@ .. ittt st et s e et e st e et e e s te e e sbe e e sabeesabeeeaneeesabeeeanseesareeeanreesaneesn 10
Y= 4] o 1P SURPRt 10
PrOTUCES ...ttt s b e st s ettt e st e s bt e s ae e s atesat e e e bt e b e e sbe e s aeesa b e s meeean e e nn e e nneesheesaneenreens 13
PrOTUCE URLS .cniieiieiiee ittt ettt ettt sttt it st st b e bt eshe e st e sabe st e e b e et e e sbeesaeesanesanenas 13
Adding new products or updating existing ProduCts .........ccoeeciiiiiiiiiei e 13
(oo [V ot i1l o 1= 0 - (USRS UPTTRR 13
AdditioNalPicture SChEMA... ..ot st s s nee e sreesneeeae 14
Y=Y 101 o] L= T 14
List Or UPdate all ProOQUCES.....cccociiiie ettt e eette e e e s ebe e e e eab b e e e s eabe e e e eabraaeeenreeeennsreas 15



SHIP
Y=Y 101 o] L= 16
List all products (SIMPIE rESPONSE) ......uviiiiciiie ettt e e ee e e et e e e ebte e e e sbae e e s snbee e e easeeeeesnneas 17
[T o To] 4 1= TSR PPTPPPTPR 17
Y Y] Aol F= gV <L UUURPRNS 18
L0 0 P oY= T U1 { ST UUUUSOt 18
Y Kool (U o Yo F- | I UUUTUPPRRNE 19
Ry oo QUToTe F= 1T ] U 19
Ry ool Ul oTe -1 =ITol o V=Y o o V- 1S 20
Productinfo SCREMIA.....ccoeii e e e st s e s r e e sre e sar e e neeesare s 20
Y= .4 o 1P SUUPRt 20
A NEW IMBICNANT ...ttt ettt st ee st e e s be e s aae e e s bt e s bt e e saeeeeabeeessseesnseeenneeasnneean 22
Add MEICHANT URLS ...ttt st st sttt et st e st sttt e st e st e s e e sanesaneas 22
NEW MErchant SCREMA. ... .o ettt st sttt sr e e saeesaeesaeesaneens 22
NEWUSEE SCREMA ...ceiiiiiiiie ettt s e e st e e be e e saee e e sbe e e sabeeeabeeenreesabeeesnseesabeesanbeesaneasn 22
CoNtactDEtails SCHEMIA ......eeiieiieeeee et et e et sne e s enre e nanes 22
Y= 4] o 1P URPRt 23
Yy o ole o [T TSP U RO P ST UR O PTUPRUPRTPPRPPO 24

Changes
Version Date Description
1.2 16.4.2018 Stockupdate APl changes. New errorcodes.
1.3 19.4.2018 OGOship => OGOship

General info

All interfaces work using XML and JSON.
Use ContentType to select XML or JSON (“application/xml” or “application/json”).
You will receive a response in the same format.

Most of the samples are done using XML only. But you can still use JSON everywhere.

All API requests require authentication using SHA1 hash.



There is a backdoor which can be used when testing APIs manually.
Just use parameter SHA1=DemO to authenticate.

Later when that Merchant is really taken into use, you need to send correct hash...

Reference implementations and readymade libraries

We will publish a reference library for PHP. With the library it is easy to integrate any service with OGOship.
When using that library you do not need to worry about using APl or SHA1 tokens. You can use typed
classes for products and orders. Those classed have get and set methods to all needed fields. When you
have set all the needed properties then you just call the update function and then a product or an order will
save its data to OGOship. Or you can ask for a product or order info by using your code of a product or an
order.

How integration to your service should be done

There exists a list function which you should schedule your service to run periodically for example every 10
minutes. That function will return then all the changes done since your last request. A change can be a
stock level change or an order status change. You will receive all changed orders and products with the
same request.

Normally you would send new orders immediately when those can be shipped. Another option would be to
schedule sending of those orders also periodically at the same time as requesting for changes. Choose
whichever process works best for you.

Using the PHP library
First you initialize the library with “Merchant token” and “Secret token” and you will receive a live instance
of the library.

Using that instance you can make actions to OGOship. Requests can be the same as described later in this
document. Full specification of the library will be released with the library.

Also .Net library coming
We are developing a mobile application for Windows Phone (for example Nokia Lumias). A service API
library used with that application will be published also when it is done.

Best practises

Best practice would be to have two different ways to call OGOship. Adding new orders would happen
synchronously and reading order and stock changes would happen periodically for example every 30
minutes.

Levels of integration
We have defined levels of integration. It depends on merchants which level of integration they require.
These are examples:



QG

SHIP

Minimum integration

e Add new orders “minimum”
o Name and address of customer
o List of order lines
o One default shipping method
o Error checking whether the order transfer has been successful.

e Follow existing orders
o Inform customer when order is shipped (email from webstore or use email sending

system of OGOship)

o Copy parcel tracking info from order.

Standard integration (in addition to Minimum)
e Add new orders “full”
o Send selected shipping method also
e Cancel unshipped orders
o Allow merchant to cancel orders which are not shipped (=NEW / DRAFT-state).
e Update product stock info to webstore
o Clientis able to see if product is available in stock.
e Copy product info between webstore and OGOship (semi)automatically
o The best way usually is that products are created to the webstore and added to
OGOship via the API. Two way transfers also possible.

Advanced integration (in addition to Standard)
e Send stock updates of incoming shipments to OGOship.

User interface for the merchant
The user interface for the merchant should contain some information that is asked from OGOship. The goal
of this information is that the merchant should not have to use OGOship’s web Ul daily but should be able

to maintain daily activities with the webstore’s Ul.

The webstore Ul should contain:
e Information whether the order has been added successfully to OGOship.
o Ifthe addition is unsuccessful, a clear notification should be displayed in a general
order list and within the order details.
o A message (e.g. email) to the merchant should be considered if an adding is
unsuccessful
o An error message for an unsuccessful adding (product code not found etc.).
e Order status at OGOship (NEW / SHIPPED / CANCELLED / PENDING and why is it PENDING /
RETURNED).



QG

SHIP

e |saproduct code present at OGOship.
e Display the <Comments2> field per order.

Functionalities that the merchant should be able to do:
e Orders:
o Add an order to OGOship manually.
o Cancel an order.
e Products:
o Add a product and a product code to OGOship manually.
o Update product information, e.g. product name, price.

Settings that can be altered by the merchant
e Are all products (product codes and info) added to OGOship or not.
e Are all product groups shipped from OGOship / which orders are added to OGOship.

Doing periodic updates from OGOship
LatestChanges request should be scheduled to run periodically every 30 minutes. That request will return
all changed Orders and Products since previous request.

LatestChanges request will return TimeStamp which should be saved somewhere and sent back when doing
next request. Using that TimeStamp, the service can return only changes occurred since previous request.

Doing synchronous updates to O0GOship
Adding new orders should be done synchronously after the customer has paid an order or otherwise
approved it to be shipped.

Cancelling of order should be synchronous to make sure the order can really be cancelled. Orders which are
in collecting or shipped state can’t be cancelled automatically anymore.

Testing OGOship integration
You can create new account for testing purposes yourself. Just register to our https://my.ogoship.com/
website and create a new merchant. Creating new users or merchants is free.

Note! To be able to do proper integration testing, your user account needs special API tester permissions.
To receive those, send an email to pekka.ylenius@ogoship.com and inform us of your OGOship username.

With proper tester permissions you can simulate whole process of collecting and shipping orders. If you
specify TestOnly attribute to Order you are allowed to mark orders as collecting and shipped.



eleln

SHIP
You can assign your products to a stock location called “Demo”. Those stock locations are allowed to be

freely used for testing purposes. You need to add a few items to be available in stock before you can mark
Orders containing those Products as Collecting or Shipped.

URLs and methods
We are using restful style in our APls.

Usually URL stays the same and HTTP Method describes what should be done.

Here is list of HTTP methods. In this list a resource can be an order, a product or something else.

_HTTP Methods __ Description

GET Get info about resource. This will not do any changes to resource.
PUT Create new resource. This will not override existing resource.
POST Update existing resource. This will not create new resource.
DELETE Delete existing resource.

Responses

All responses from the server are inside a container called “Response”.

Also all responses have a node called Info. Info has the following attributes.

Namein XML NameinJSON Description

Success @Success “true” or “false” will tell if operation was successful.

Timestamp @Timestamp Unix style timestamp of server.

Error @Error Error message. This attribute is visible only if there was error in
processing request.

Json Sample

{“Response”: {

“Info”:{
“@Success”:”true”,
“@Timestamp”:”1310653904.4377611”’},

1

XML Sample

<Response>
<Info Success="true” Timestamp=1310592779.6092734” />

</Response>




eleln

SHIP

Orders

Order status

Normally it is not possible for a merchant to change the status after an order is in collecting state. For
testing purposes there exists a ‘test only’ option. When an order is in testing, then it is possible for a
merchant to test all the statuses.

When new order is created it will go automatically to new state. If there is issue with shipping code when
new order will be accepted but it will be put into draft state.

Status _ Description

DRAFT Can be used when manually creating an order. Order is editable in Web. Warehouse will
not do anything for orders in this state.

RESERVED Products are reserved from stock. Orders in this state will not be processed.

NEW Order is waiting to be collected and shipped.

COLLECTING Warehouse is collecting products. (It is not possible to cancel order anymore using Api.)

PENDING Order is pending for some products.

CANCELLED Order is cancelled.

SHIPPED Order is shipped.

Adding new orders or updating existing orders

Similar schema can be used when adding new orders or when updating existing ones. When updating an
order it is only needed to send the modified data. For example, you can just post a new status and
everything else will be left as it is.

Existing orders can be edited before they are in collecting state.

Order URLs
All requests return full content of an order specified using URL

URL /merchant/MerchantID/order/Reference?SHA1=SHA1token
Method Use PUT to add new order

Use POST to update existing order

Use GET to just read info of order

Use DELETE to remove order before it is collected

Reference Reference number of order
MerchantID Unique ID generated for merchant
SHA1 Is calculated from string “order,add,OrderID,SecretToken”,

“order,update,OrderID,SecretToken” , “order,info,OrderID,SecretToken” and
“order,remove,OrderID,SecretToken”

Order schema

Property Required Type Description
Shipping No string Name of shipping method




elels

SHIP

ShippingCode No string Code of shipping method which you have enabled at
Edit Merchant page. This is required if more than 1
shipping method is selected.

PickUpPointCode No string Code of pickup point. Used with “Matkahuolto
Lahelld” and “Itella SmartPost”.

Reference N/A string Reference number of order

Status No string Status of order

PriceTotal No decimal Price is needed for “Postiennakko” and
“Matkaennakko”

PriceCurrency No string Currency of PriceTotal and UnitPrice (of OrderLine).

TrackingNumber  N/A string Warehouse will assign tracking number when
available.

Comments No string Write any additional comments about order.

Comments2 N/A string Comments from OGOship.

TestOnly No boolean “true”/"false” Set to true for testing purposes.

Customer Yes Customer See details below

OrderlLines Yes OrderLine[] Required for new order. If given when updating order
then all order lines will be replaced with the ones sent
with update. See details below.

Documents No Document(] Not required. If given when updating order then all
documents will be replaced with the ones sent with
update. See details below.

PaymentType No string Free text name of payment type.

CashOnDelivery No CashOnDelivery This element is required for cash on delivery orders

CashOnDelivery schema

Property Required Type Description

Reference No string Bank reference (Order reference number + required
validation digits are used if not specified)

Amount Yes decimal  Amount requested from customer

Currency No string Currency of amount. (ISO 4117 Code). Default value EUR will
be used if not specified.

Customer schema

Property Required Type Description

Name Yes string

Company No string

Address1 Yes string

Address2 No string

City Yes string

Country Yes string Use two-letter codes: ISO 3166-1 alpha-2
Zip No number

Phone No string

Email No string

©



eleln

SHIP
OrderLine schema
Property Required Type Description
Code Yes string Code of product
Code2 No string 2" part of product code
Quantity Yes integer Quantity of products
UnitPrice No decimal  Sales price of single product. (Price including VAT.)
VatPercentage No int Percentage of VAT included in sales price (UnitPrice).
ProductinfoUrl No string Full url of product info page. If there are lots of similar

products then warehouse staff can use this page to verify
products before shipping.

ProductPictureUrl No String Full url of product picture. If there are lots of similar
products then warehouse staff can use this page to verify
products before shipping.

Document schema

Property Required Description

Type Yes string Name of type of document, e.g. "receipt".
Documents with type "receipt" will be automatically printed
and attached to all deliveries. (This can be changed).

URL Yes string Full url of document.

Sample
Content sent using order PUT or POST methods could look like this:

<Order>
<Shipping>Posti</Shipping>
<PriceTotal>1000.00</PriceTotal>
<PriceCurrency>EUR</PriceCurrency>
<Comments>Tahan voi kirjoittaa tekstid.</Comments>
<TestOnly>true</TestOnly>
<Documents>
<Document>
<Type>receipt</Type>
<URL>http://Foo.bar.com/docl.pdf</URL>
</Document>
<Document>
<Type>instructions</Type>
<URL>http://Foo.bar.com/instructions.pdf</URL>
</Document>
</Documents>
<Customer>
<Name>Heikki Heikkinen</Name>
<Company>Heikki Heikkinen</Company>
<Addressl>Kotikati 1</Addressi>
<Address2>Ylakerta</Address2>
<City>Nowhere</City>
<Country>fi</Country>
<Zip>12345</Zip>
<Phone>+358 50 123 2345</Phone>
<Email>foo@bar.com</Email>
</Customer>

10



<CashOnDelivery>
<Reference>10003</Reference>
<Amount>1000.50</Amount>
<Currency>EUR</Currency>
</CashOnDelivery>
<OrderlLines>
<OrderLine>
<Code>PUKA</Code>
<Quantity>1</Quantity>
<UnitPrice>13.00</UnitPrice>
<VatPercentage>24</VatPercentage>
</OrderLine>
<OrderLine>
<Code>bb</Code>
<Quantity>3</Quantity>
<UnitPrice»>999.00</UnitPrice>
<VatPercentage>24</VatPercentage>
</OrderlLine>
</OrderlLines>
</Order>

And response received back could look like this:

<Response>
<Info Success="true” Timestamp=1310592779.6092734” />
<Order>
<Shipping>Posti</Shipping>
<Reference>1</Reference>
<Status>NEW</Status>
<PriceTotal>1000.00</PriceTotal>
<TrackingNumber>AS123123B22</TrackingNumber>
<Comments>Tahan voi kirjoittaa tekstia.</Comments>
<Customer>
<Name>Heikki Heikkinen</Name>
<Company>Heikki Heikkinen</Company>
<Address1>Kotikati 1</Addressi>
<Address2>Ylakerta</Address2>
<City>Nowhere</City>
<Country>fi</Country>
<Zip>12345</Zip>
<Phone>+358 50 123 2345</Phone>
<Email>foo@bar.com</Email>
</Customer>
<OrderLines>
<OrderLine>
<Code>PUKA</Code>
<Quantity>1</Quantity>
</OrderLine>
<OrderLine>
<Code>bb</Code>
<Quantity>3</Quantity>
</OrderlLine>
</OrderlLines>
<Documents>
<Docl>http://Foo.bar.com/docl.doc</Docl>
<Document>http://Foo.bar.com/doc2.doc</Document>
</Documents>

eleln

SHIP

11



eleln

SHIP
</Order>

</Response>

12



Products

Product URLs

eleln

SHIP

All requests return full info of product specified using URL

URL

Method

/merchant/MerchantiD/Product/ProductCode?SHA1=SHA1token
/merchant/MerchantiD/Product/ProductCode/ProductCode2?SHA1=SHA1token

Use PUT to add new product
Use POST to update existing product
Use GET to just read info of product

Use DELETE to remove product. Count of products in stock must be zero.

ProductCode

Product code which must be unique

ProductCode2 Product code part 2. (If specified then code + code2 must be unique.)

MerchantID

Unique ID generated for merchant

SHA1

Is calculated from string “product,add,ProductCode,SecretToken” ,
“product,update,ProductCode,SecretToken”,
and “product,remove,ProductCode,SecretToken”

” “"

product,info,ProductCode,SecretToken”

Adding new products or updating existing products
Similar schema can be used when adding new products or when updating existing ones. When updating a

product it is only needed to send the modified data. For example, you can just post a new name and

everything else wi

Il be left as it is.

Note. Currently we don’t take copies of product info when saving orders. So when renaming products also

product lists in old orders will be changed. This might change in the future if there is any need to keep the

old orders untouched even if product info has changed.

Product schema

Property Required Type Description

Name Yes string Display name of product

Description No string Additional information about product

ShortDescription No string Short description of product

Code No string Partl of product code

Code2 No String Part2 of product code. (Not required)

SupplierCode No string Supplier given code of this product

Supplier No string Name of supplier

Group No string Group of product

EANCode No string EAN code of product

Width No int Width of product (mm)

Height No int Height of product (mm)

Depth No int Depth of product (mm)

Weight No int Weight of product (g)

AlarmLevel No int Merchant can receive reports if stock is below this
alarm level

Stock N/A int Count of products in stock

StockAvailable N/A int Count of products available for orders

13



elels

SHIP

Price No decimal Supply price of product for calculating value of
stock

SalesPrice No decimal Sales price of product

VatPercentage No int Vat percentage included into Price and SalesPrice

Currency No string Currency of Price and SalesPrice

Reserved N/A int Count of products reserved for not shipped orders

InfoUrl No string Url of product page at webstore. This helps
warehouse staff to recognize products. Very
important!

PictureUrl No string Url of product picture at webstore. This helps
warehouse staff to recognize products. Very
important!

StockUpdate N/A int Quantity of new products coming to stock.

StockUpdateTime N/A int Unix style time estimate of new stock update
coming.

EditTime N/A int Unix style timestamp of last change made to this
product.

CountryOfOrigin No string 2 char iso code of country of origin for customs
info

CustomsDescription No string Infotext for customs documents

AdditionalPicture No AdditionalPicture Additional pictures of product

AdditionalPicture schema
Property Required Type Description
Url Yes string Url of image

Sample
Content sent using product PUT or POST methods could look like this:

<Product>
<Name>Leijona</Name>
<Description>-</Description>
<SupplierCode>LE-1</SupplierCode>
<Group>ANIMALS</Group>
<EANCode>123456</EANCode>
<Width>1000</Width>
<Height>600</Height>
<Depth>400</Depth>
<Weight>100000</Weight>
<AlarmLevel>6</AlarmLevel>
<Price>100.00</Price>
<SalesPrice>1000.00</SalesPrice>
<VatPercentage>24</VatPercentage>
<Currency>EUR</Currency>
<CountryOfOrigin>FI</CountryOfOrigin>
<CustomsDescription>Animal</CustomsDescription>
<InfoUrl>http://foo.bar/lei</InfoUrl>
<PictureUrl>http://foo.bar/image.jpg</Pictureurl>
</Product>

14



eleln

SHIP
And response received back could look like this:

<Response>

<Info Success="true” Timestamp=1310592779.6092734” />

<Product>
<Code>LE-1</Code>
<Code2></Code2>
<SupplierCode>LEI</SupplierCode>
<Supplier>Zoo</Supplier>
<EANCode>123456</EANCode>
<Width>1000</Width>
<Height>600</Height>
<Depth>400</Depth>
<Weight>100000</Weight>
<AlarmLevel>6</AlarmLevel>
<EditTime>1310592779</EditTime>
<Name>Leijona</Name>
<Description>-</Description>
<Culture></Culture>
<Stock>7</Stock>
<Reserved>2</Reserved>
<StockAvailable>5</StockAvailable>
<Group>ANIMALS</Group>
<Stock>7</Stock>
<InfoUrl>http://foo.bar/lei</InfoUrl>
<PictureUrl>http://foo.bar/image.jpg</Pictureurl>
<Price>100.00</Price>
<SalesPrice>1000.00</SalesPrice>
<VatPercentage>24</VatPercentage>
<Currency>EUR</Currency>
<StockUpdate>12</StockUpdate>
<StockUpdateTime>1310592779</StockUpdateTime>
<CountryOfOrigin>FI</CountryOfOrigin>
<CustomsDescription>Animal</CustomsDescription>
<AdditionalPicture><Url>http://foo.bar/image.jpg</Url></AdditionalPicture>
<AdditionalPicture><Url>http://foo.bar/image2.jpg</Url></AdditionalPicture>

</Product>

</Response>

List or update all products
All requests return full info of product specified using URL

/merchant/MerchantID/Products?SHA1=SHA1token
Method Use PUT or POST to add new and update existing products
Use GET to just read info of products

MerchantID Unique ID generated for merchant
SHA1 Is calculated from string “product,all,SecretToken”

15



eleln

SHIP
Products which exist already are just updated. Products which do not exist are added.

Sample
Content sent using product PUT or POST methods could look like this:

<Products>
<Product>
<Name>Leijona</Name>
<Code>LE-1</Code>
<Code2></Code2>
<Description>-</Description>
<SupplierCode>LE-1</SupplierCode>
<EANCode>123456</EANCode>
<Width>1000</Width>
<Height>600</Height>
<Depth>400</Depth>
<Weight>100000</Weight>
<AlarmLevel>6</AlarmLevel>
<Price>100.00</Price>
<SalesPrice>1000.00</SalesPrice>
<VatPercentage>24</VatPercentage>
<Currency>EUR</Currency>
<CountryOfOrigin>FI</CountryOfOrigin>
<CustomsDescription>Animal</CustomsDescription>
<InfoUrl>http://foo.bar/lei</InfoUrl>
<PictureUrl>http://foo.bar/image.jpg</Pictureurl>
</Product>
<Products>

Json version would look like this

{
"Products”: {
"Product": [
{
"Code": "LE-1",
"Name": "Leijona",
"Currency": "EUR"
¥
{
"Code": "LE-2",
"Name": "Leijona2",
"Currency": "EUR"
}
]
}
}

And response received back could look like this:

<Response>
<Info Success="true” Timestamp=1310592779.6092734” />
<Product>
<Code>LE-1</Code>
<Code2></Code2>
<SupplierCode>LEI</SupplierCode>
<Supplier>Zoo</Supplier>
<EANCode>123456</EANCode>

16



eleln

SHIP
<Width>1000</Width>

<Height>600</Height>
<Depth>400</Depth>
<Weight>100000</Weight>
<AlarmLevel>6</AlarmLevel>
<EditTime>1310592779</EditTime>
<Name>Leijona</Name>
<Description>-</Description>
<Culture></Culture>
<Stock>7</Stock>
<Reserved>2</Reserved>
<StockAvailable>5</StockAvailable>
<Group>ANIMALS</Group>
<Stock>7</Stock>
<InfoUrl>7</InfoUrl>
<PictureUrl>7</Pictureurl>
<Price>100.00</Price>
<SalesPrice>1000.00</SalesPrice>
<VatPercentage>24</VatPercentage>
<Currency>EUR</Currency>
<StockUpdate>12</StockUpdate>
<StockUpdateTime>1310592779</StockUpdateTime>
<CountryOfOrigin>FI</CountryOfOrigin>
<CustomsDescription>Animal</CustomsDescription>
<AdditionalPicture><Url>http://foo.bar/image.jpg</Url></AdditionalPicture>
<AdditionalPicture><Url>http://foo.bar/image2.jpg</Url></AdditionalPicture>
</Product>
</Response>

List all products (simple response)

/merchant/MerchantID/Products?SHA1=SHA1token&ResponseType=Simple
Method Use PUT or POST to add new and update existing products
Use GET to just read info of products

MerchantID Unique ID generated for merchant
SHA1 Is calculated from string “product,all,SecretToken”

Response
And response received back could look like this:

<Response>
<Info Success="true” Timestamp=1310592779.6092734” />
<Product>
<Code>LE-1</Code>
<Code2></Code2>
<EditTime>1310592779</EditTime>
<Stock>7</Stock>
<Reserved>2</Reserved>
<StockAvailable>5</StockAvailable>
<StockUpdate>12</StockUpdate>

17



eleln

SHIP
<StockUpdateTime>1310592779</StockUpdateTime>

</Product>
</Response>

Latest changes

To follow all changes happening in OGOship your service needs to poll the latest changes method. You can
for example schedule a task to query for latest changes every 15minutes. For requests you need to send a
timestamp of the previous request as parameter. That way you can be sure that you do not miss any
changes.

This method retrieves all latest changes from Orders, Products or both.

Changes URL

/Merchant/MerchantID/LatestChanges? SHA1=SHA1token&TimeStamp=Timestamp
/Merchant/MerchantID/Product/LatestChanges?

SHA1=SHA1token&TimeStamp=Timestamp
/Merchant/MerchantID/Order/LatestChanges?
SHA1=SHA1token&TimeStamp=Timestamp

Method GET

Timestamp Only give changes after timestamp

MerchantID Unique ID generated for merchant

SHA1 Is calculated from string “changes, TimeStamp,SecretToken”

Response follows same Order and Product schemas specified earlier.
Here is one possible sample response:

<Response>
<Info Success="true” Timestamp=1310595606.1569428” />
<Orders>
<Order>..</0Order>
<Order>..</0Order>
<Order>
<Shipping>Posti</Shipping>
<Reference>11</Reference>
<Status>NEW</Status>
<Customer>
<Name>Heikki Heikkinen</Name>
<Company>koti ab</Company>
<Addressl1>Kotikati 1</Addressil>
<Address2>Ylakerta</Address2>
<City>Nowhere</City>
<Country>fi</Country>
<Zip>12345</Zip>
<Phone>+358 50 123 2345</Phone>
<Email>foo@bar.com</Email>
</Customer>
<OrderLine>

18



eleln

SHIP
<Code>PUKA</Code>

<Quantity>1</Quantity>
</OrderlLine>
<OrderLine>
<Code>bb</Code>
<Quantity>3</Quantity>
</OrderlLine>
</Order>
</Orders>
<Products>
<Product>
<Name>Leijona</Name>
<Description>-</Description>
<ManufacturerCode>LE-1</ManufacturerCode>
<EANCode>123456</EANCode>
<Width>1000</Width>
<Height>600</Height>
<Depth>400</Depth>
<Weight>100000</Weight>
<AlarmLevel>6</AlarmLevel>
</Product>
</Products>
</Response>

StockUpdate

StockUpdates may be made before shipping products to OGOship. By using stock updates we can check
that nothing is lost during shipping. A stock update is also needed so that the staff at OGOship is able to
know whose products arrive. While doing stock updates you can also create new products to OGOship. You
can use stock updates to easily see which products are under warning level and insert those to new stock

updates.
Draft Can be used when manually creating StockUpdate. Warehouse will not do anything for
StockUpdates in Draft state. Merchant is able to edit StockUpdate when it is this state.
Waiting Warehouse is waiting for products to arrive. Merchant is able to cancel shipment in
waiting state.
Received Warehouse has received shipment. All stock values have not been updated yet.
In Stock Warehouse has fully handled receiving products and updated stocks.
Cancelled StockUpdate is cancelled.
Stock update URLs

All requests return full content of stock update specified using URL

/merchant/MerchantID/stockupdate/StockUpdatelD
Method Use PUT to add new stock update

Use POST to update existing stock update

Use GET to just read info of stock update

Use DELETE to remove order before it is collected

19



elels

SHIP
StockUpdatelD Reference number of stock update
MerchantID Unique ID generated for merchant
SHA1 No sha hash needed for stock update
Stock update schema
Property Required Type Description
Status No string Status of stock update
Reference N/A string Reference number of stock update is used from url
ReceiveDate Yes integer Date when products will be delivered to warehouse (unix
type datetime)
Supplier Yes string Supplier of products
Comments No string Additional comments for warehouse
Products Yes Productinfo Info about products to added to stock

ProductInfo schema

Property Required Type Description
Code Yes string Unique code of product
Name No/Yes string Name of product. Required for new products.
Quantity Yes integer Number of products ordered
Received N/A integer Number of products received by warehouse
Comments No string Additional comments for warehouse
Price No decimal Price of product for calculating value of stock
SupplierCode No string ProductCode for supplier

Sample

Content sent using order PUT or POST methods could look like this:

<StockUpdate>
<Status>NEW</Status>
<Reference>MyStockUpdate</Reference>
<Supplier>Apple</Supplier>
<ReceiveDate>1232343456</ReceiveDate>
<Products>
<ProductInfo>
<Code>LI-1</Code>
<Name>Lion big</Name>
<Quantity>10</Quantity>
<SupplierCode>LLI</SupplierCode>
</ProductInfo>
<ProductInfo>
<Code>BLI</Code>
<Name>Lion baby</Name>
<Quantity>30</Quantity>
<SupplierCode>BLI</SupplierCode>
</ProductInfo>
</Products>
</StockUpdate>



eleln




eleln

SHIP

Add new Merchant

It is possible to add a new merchant though the API to make it very easy for new customers to start using
OGOship.

The WebStore might know most of the needed information for registration already. Therefore, in the best
possible case, only a click or two are needed from the merchant.

Add merchant URLs
Requests returns full content of newly created merchant

URL /merchant
Method Use PUT to add new stock update

New merchant schema

Property ¥ Required Type @ Description Requnred Type Description

Name es string Name of merchant

Streetlinel No string First line of street address of merchant

StreetlLine2 No string Second line of street address of merchant

PostCode No string Post code of merchant

City No string City of merchant

Country No string Country of merchant

BankAccount No string Bank account for Cash On Delivery orders (IBAN)

BicCode No string Bic Code of bank

id N/A string MerchantID of new merchant

SecretToken N/A string Secret token generated for a merchant

User Yes NewUser Users which are linked to new merchant

ResponsiblePerson Yes ContactDetails Contact details of person who will sign final
agreement between OGOship and new merchant.

NewUser schema

Property  Required Type  Descripton Requwed Type Description

UserName string Username of user. If username is empty or missing then
email will be used as username.

Email Yes string Email of user

Password No string Password of user. If password is missing or empty then
new password will be generated and sent as email to user.

ContactDetails schema

Property Required Type Description

Name Yes string Name of person

Email Yes string Email of person

Phone Yes string Phone number of person

22



OGO

SHIP

Sample
Content sent using merchant PUT method could look like this:

<Merchant>

<Name>Api test</Name>

<StreetLinel>Street 1</StreetlLinel>

<StreetLine2>Upper floor</StreetlLine2>

<PostCode>12345</PostCode>

<City>City</City>

<Country>Finland</Country>

<BankAccount>12 124122 234345 345345</BankAccount>

<BicCode>NDEAFIN</BicCode>

<Id>321c73bd-9a40-4bca-898d-d22a0002d8b6</Id>

<SecretToken>482e3233-0858-4a3f-ac03-e6d5208814d2</SecretToken>

<User>
<UserName>user</UserName>
<Email>foo@bar.com</Email>
<Password>foAz733!</Password>

</User>

<User>
<UserName>user2</UserName>
<Email>foo2@bar.com</Email>
<Password>foAz7323!</Password>

</User>

<ResponsiblePerson>
<Name>First Lastname</Name>
<Email>foo@bar.com</Email>
<Phone>+35840123456</Phone>

</ResponsiblePerson>

</Merchant>

And response received back could look like this:

<Response>
<Info Success="true" Timestamp="1384634732.3910432" />
<Merchant>
<Name>Api test</Name>
<StreetLinel>Street 1</StreetlLinel>
<StreetLine2>Upper floor</StreetLine2>
<PostCode>12345</PostCode>
<City>City</City>
<Country>Finland</Country>
<BankAccount>12 124122 234345 345345</BankAccount>
<BicCode>NDEAFIN</BicCode>
<Id>321c73bd-9a40-4bca-898d-d22a0002d8b6</1d>
<SecretToken>482e3233-0858-4a3f-ac03-e6d5208814d2</SecretToken>
<User>
<UserName>user</UserName>
<Email>foo@bar.com</Email>
</User>
<User>
<UserName>user2</UserName>
<Email>foo2@bar.com</Email>
</User>
</Merchant>
</Response>

23



eleln

SHIP

Errorcodes

Code Description

Annn Authentication specific errors

Mnnn Merchant specific errors

Onnn Order specific errors

Pnnn Product specific errors

Unnn Stock update specific errors

A001 Merchant not specified!

A002 Merchant not in correct format!

A030 SHA1 not specified!

A031 SHA1 Hash not valid!

MO009 Merchant not found!

Mo010 Merchant is suspended!

0010 Order with ID xxx not found!

0011 Order with same ID already exists!

0015 Order cannot be updated anymore!

0016 Not valid next state for Order!

0020 Order reference not specified!

0030 No 'OrderLine' elements found.

0031 Element 'OrderLine/Code' is missing.

0032 Element 'OrderLine/Code' is empty or whitespace.

0033 Element 'OrderLine/Quantity' is missing.

0034 OrderLine/Quantity element is not integer.

P010 Product with code "xxx" not found!

PO11 Product with same ID already exists!

P016 Product with code "xxx" cannot be removed!

P020 Product code not specified!

0040 CashOnDelivery 'Amount' is missing.

0041 CashOnDelivery 'Amount’ is not valid.

0050 Customer 'Name' is missing.

0051 Customer 'Address1' is missing.

0052 Customer 'City' is missing.

0053 Customer 'Country' is missing.

0055 'Customer’ is missing.

P021 Update product only once in single request.

uo15 StockUpdate can't be updated anymore.

uo1e6 Status nnn is not valid next status when stockupdate in mmm status. Valid
statuses are: (a,b,c)

24



elels

SHIP
U030 No 'Productinfo’ elements found.
U031 Element 'Productinfo/Code' is missing.
U032 Element 'Productinfo/Code' is empty or whitespace.
uo43 Reference is required.
uo44 ReceiveDate is required.
uo45 Supplier is required.
uo61 Element 'Productinfo/Name' is missing for new product.

25




